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A general theory for two-dimensional vortex interactions is developed from the 
observation that, under slowly changing external influences, an individual vortex 
evolves through a series of equilibrium states until such a state proves unstable. Once 
an unstable equilibrium state is reached, a relatively fast unsteady evolution ensues, 
typically involving another nearby vortex. During this fast unsteady evolution, a 
fraction of the original coherent circulation is lost to filamentary debris, and, 
remarkably, the flow reorganizes into a set of quasi-steady stable vortices. 

The simplifying feature of the proposed theory is its use of adiabatic steadiness and 
marginal stability to determine the shapes and separation distance of vortices on the 
brink of an inelastic interaction. As a result, the parameter space for the inelastic 
interaction of nearby vortices is greatly reduced. In the case of two vortex patches, 
which is the focus of the present work, inelastic interactions depend only on a single 
parameter: the area ratio of the two vortices (taking the vorticity magnitude inside 
each to be equal). Without invoking adiabatic steadiness and marginal stability, one 
would have to contend with the additional parameters of vortex separation and shape, 
and the latter is actually an infinitude of parameters. 

1. Introduction 
In the absence of strong external forcing and excessive dissipation, two-dimensional 

flows tend to organize themselves into well-defined, well-separated vortices within a sea 
of quasi-passive filamentary debris (Brachet et al. 1988; Santangelo, Benzi & Legras 
1989; McWilliams 1990; Dritschel 1993 and references therein). The vortices are the 
characteristic structures of two-dimensional flows and their interactions with each 
other, particularly their inelastic interactions, i.e. merger or straining out, partial or 
complete (Dritschel & Waugh 1992), determine the overall organization, distribution 
and characteristics of the flow. 

This observation has motivated recent attempts to formulate a theory of 2D flows, 
specifically turbulence, that is based on inelastic interactions (Carnevale et al. 1991 ; 
Benzi et al. 1992). However, fresh evidence suggests that the picture is considerably 
more complex than was imagined. In particular, (i) the local binary interaction of two 
vortices seldomly leads to a single compound vortex (this is why ‘vortex merger’ is not 
an appropriate term - see Dritschel & Waugh 1992), and (ii) the inelastic interaction 
of two vortices depends on at least one other vortex to push them close enough 
together (Dritschel 1993 ; Dritschel & Zabusky 1995). 

So far, these theories have used crude quantitative results for the inelastic interaction 
process. There is a debate on whether or not more accurate quantitative results are 
necessary. Does the decaying state of two-dimensional turbulence depend on more 
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elaborate vortex interactions besides the merging of like-signed vortices? It is argued 
here that it does. In any case, the proposed theories are not consistent with the only 
two-dimensional turbulence data at sufficiently high resolution to test them (Dritschel 
1993). 

The goal in the present paper is not to formulate a theory of two-dimensional 
turbulence - this is regarded as too difficult a task at the present moment (for reasons 
why, see Dritschel & Zabusky 1995). Rather, the goal is to formulate a theory for the 
specific inelastic interactions that constitute turbulence. The latter is itself a difficult 
task, and it is necessary to invoke some kind of simplifying principle. 

This paper invokes the principle of ‘ adiabatic steadiness’, which states that, between 
inelastic interactions, vortices evolve through a sequence of near-equilibrium states, 
these states being parametrically determined by the instantaneous local straining flow 
exerted by surrounding vortices, until which time the equilibrium state proves unstable. 
Thereafter, a rapid, unsteady motion ensues, this being the inelastic interaction itself. 

This principal rests on the assumption that vortices are, in general, widely separated, 
as in the latter stages of decaying two-dimensional turbulence simulations. This implies 
that surrounding vortices modify the shape of a given vortex at a rate much slower than 
the intrinsic frequency of the vortex (proportional to its peak vorticity), except when 
two vortices get sufficiently close together to precipitate an inelastic interaction. Note 
that we do not require that the irrotational strain experienced by a given vortex be 
small, but rather than its rate of change be small. Two nearby vortices exert 
significant strain upon one another while more distant vortices exert considerably 
weaker strain. 

In the present work, we study in detail the case of two unequal-sized, patch-like 
vortices having either equal vorticity or, with novelty, opposite vorticity. We examine 
their equilibrium states (in $3), making the approximation that the strain exerted by 
other, distant vortices on the pair in question is weak compared to the strain exerted 
by members of the pair on each other. That is, the shape of each vortex is determined 
by the local equilibrium of two isolated vortices a certain distance apart. Their 
separation distance is, however, controlled by surrounding vortices not explicitly 
modelled. Then, we examine (in 94) the linear stability of these equilibrium states to 
determine the critical separation distance which precipitates an inelastic interaction. 

The remarkable fact is that the two constraints of adiabatic steadiness and marginal 
stability reduce the parameter space to just one parameter: the area ratio of the two 
vortices. Quantitative results for the transition from one state to another, as a function 
of the initial area ratio, are then obtained in $5 from a series of high-resolution 
‘contour surgery’ calculations (Dritschel 1988a, 1989a). A common initial stage of 
instability is observed and linked to the destabilization of an elliptical vortex. The 
emergence of a coherent quasi-steady state is also observed, and the return to near 
steadiness (in the large) is found to occur by way of an intense filamentation of the 
vortices’ boundaries. Some conclusions and ideas for future applications and extensions 
are offered in $ 6 .  

2. Adiabatic evolution 
In this section, a single example illustrates the striking tendency for vortices to evolve 

adiabatically in the presence of slowly changing external straining. The example 
generalizes the one given by Legras & Dritschel(1993), who considered a single vortex 
(both a patch and a smooth profile) within a pure adverse shear growing linearly in 
time from zero to mimic the approach of two vortices initially far apart. 
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FIGURE 1. (a) The evolution of the three collapsing vortex patches. Contours of vorticity w are shown 
in bold superposed on those of the streamfunction in a particular co-rotating frame of reference (see 
Appendix A). Time advances to the right and downwards in unit intervals (i.e. vortex half-rotation 
periods) starting at t = 200. (b) The background rotation rate SZ (i) and the dimensionless degree of 
unsteadiness E (ii) versus time; SZ and E are defined in Appendix A. 8 is computed for the entire 
vorticity distribution, including the debris produced after the interaction, which is why it does not 
diminish significantly after the interaction. 
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In the example considered here, three distantly separated vortex patches are initially 
positioned in a configuration which would cause a corresponding set of point vortices 
to collapse to a point in finite time (Grobli 1877; Aref 1979). For point vortices, the 
collapse initial conditions have zero measure (taking, say, the mean inter-centroid 
distance between the vortices to have a given value), but for vortex patches there is a 
finite probability that the vortices may get close enough to undergo an inelastic 
interaction. 

The conditions for point vortex collapse are as follows: (i) given two like-signed 
vortices, of strengths K~ and K ~ ,  the third vortex must have strength K~ = 
( K ~ + K ~ ) ,  which is opposite in sign to the other two, and (ii) the third vortex must 
lie along either of two arcs of a certain circle whose centre lies at the centroid of the 
two like-signed vortices (Aref 1979). 

In the calculation to be illustrated, we consider three vortex patches, of vorticity 
magnitude 27-t and areas 7-t, n/2 and n/3. Initially, the two like-signed (positive) vortices 
are separated (centre-to-centre) by 20 units (i.e. 20 radii of the largest vortex patch). 
The third (negative) vortex is positioned on the collapse circle at the angle 8 = -45". 
The collapse time for the corresponding point vortices is t = t, = 205.65. 

This and other calculations presented in this paper are performed using 'contour 
surgery', (Dritschel 1988 a, 1989a), a refined contour dynamics (Zabusky, Hughes & 
Roberts 1979) algorithm with an automatic and well-tested method for removing fine- 
scale filamentary debris. In all calculations presented in this paper, filamentary debris 
are removed below the scale S = 0.0009. This level of 'surgery' corresponds to a 
maximum node separation of p = 0.06. The time step (of a fourth-order Runge-Kutta 
scheme) is here set to 0.05, half the maximum suggested value, for a high level of 
accuracy. 

Figure l(a) illustrates the evolution of the three vortex patches up to the time of 
collapse; contours of vorticity w (bold) and streamfunction (in a particular rotating 
frame of reference - see Appendix A for details) y? (light) are superposed to indicate the 
degree to which the vortices are in mutual equilibrium (figure 1 b gives a quantitative 
measure, c, proportional to the r.m.s. normal velocity). The slight, growing 
misalignment of the w and y? contours before the collapse time (around t = 206) is due 
almost entirely to the growing eccentricity of and the collapsing separation distance 
between the three vortices as they fall in toward each other. That is, some misalignment 
is necessary even to pass adiabatically from one near-equilibrium state to another (see 
also the discussion in Legras & Dritschel 1993). The actual degree to which the 
contours are aligned is significant, since the evolving vortex configuration is, by 
construction, unsteady. The three vortices fall in toward each other at an accelerated 
pace until the collision - here the inelastic interaction - takes place. Afterwards, the 
two principal coherent vortices re-adjust to a near equilibrium (as seen by the near 
correspondence of their w and y? contours). Remarkably, the transition from one near 
equilibrium state to another occurs on a vortex-rotation timescale (2 units of time). 

3. Equilibrium states for two unequal vortex patches 
We next examine the steadily co-rotating states for two unequal-area vortex patches 

having either the same (uniform) vorticity or opposite vorticity. Such a configuration 
is the simplest non-trivial configuration that one can consider. Moreover, vortex 
patches having equal vorticity magnitudes are arguably a good approximation to the 
types of vortices one would see after many inelastic interactions in turbulence 
(Dritschel & Waugh 1992; Dritschel 1993). This is simply because the most extreme 
levels of vorticity have the greatest chance of survival - peripheral vorticity is rendered 
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FIGURE 8. Properties of two equal-area opposite-signed equilibrium vortex patches : (a) the 
translation velocity U ,  (b)  the distance between vortex centroids d and (c) the excess energy E as a 
function of the relative thickness 8. The linear impulse I satisfies I = nd. The margin of stability is 
at 8 = 0.472. 

( d )  the excess energy E. Diagnostics for the special case, a = 1, are shown in figure 8 : 
in (a) the translation velocity U ;  in (b) the distance between vortex centroids A ;  and in 
(c) the excess energy E as a function of 6. (Note that, in the limit a+ 1, the scaled 
rotation rate tends to 2U/A while the scaled angular impulse tends to -ZA/4, where 
I is the linear impulse, i.e. I = s s w ( x ) y  dx dy.) An additional curve is again drawn on 
the contour plots (in figure 7) to show the margin of instability; all solutions having 
greater 6 (to the right of this curve) are unstable (see 54 below). Note that the marginal 
stability curve does not always pass through a simultaneous extremum of both J and 
E (taken as functions of 6, for fixed a) even though these extrema still coexist. This 
result casts doubt on the universality of Saffman’s theory (Saffman 1992), previously 
supported in the case of like-signed vortices (further details are given below in 54). 

Finally, the contour plots of J and E cannot be used to search for the possibility of 
inviscid transitions because different equilibria generally have different areas of positive 
and negative vorticity. 
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FIGURE 2. Schematic of the equilibrium state of two like-signed vortex patches. 

FIGURE 3. Selected like-signed equilibrium solutions for (a) a = 0.2, (b) a = 0.4, 
(c)  a = 0.6, (d )  a = 0.8 and (e) a = 1. 

and in ( d )  the ‘excess energy’ (see Dritschel 1989a), where 

In the contour plots, an additional curve is drawn to indicate the margin of instability 
(all solutions with smaller 6 to the left of this curve are unstable, according to the direct 
eigen-analysis of the next section). Note that this curve passes through a simultaneous 
extremum of both J and E (taken as functions of 6, for fixed a). The entire lower branch 
of the double-values E(J)  curve is unstable, in apparent agreement with the theory of 
Saffman (1992) (in particular, see Kamm 1987). But see the case for opposite-signed 
vortices below. 

The contour plots of J and E also reveal that inviscid transitions, i.e. evolutionary 
transitions involving a negligible loss of filamentary debris (Dritschel 1985, 1986) are 
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FIGURE 4. Contour maps of (a) the rotation rate 52, (b) the distance between vortex centroids A ,  (c) 
the angular impulse J and ( d )  the excess energy E as a function of the gap 8 and area ratio a for the 
like-signed equilibrium solutions. The additional curve indicates the margin of instability. 

possible between all points (6,a) and (a, a’) which have identical J and E (the 
circulation is the same for all states, by design). (Inviscid transitions also require that 
the symmetry of the final state be consistent with the symmetry of the initial one, as 
here.) The only sensible transitions are between unstable and stable states, and the 
unstable states are seen to lie just inside the marginal stability curve. This implies that 
transitions beginning from marginally unstable states - explored below in 0 5 - will in 
general produce little filamentary debris. 

3.2. Opposite-vorticity equilibria 
For two vortices having opposite vorticity, it is difficulty to choose a distance measure 
that picks up the complete family of equilibria for all vortex area ratios. The one that 
has been found to work best, after many attempts, is the width of the smaller vortex 
divided by width of the entire configuration, this ratio of widths being denoted 6, with 
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FIGURE 5. Schematic of the equilibrium state of two-opposite-signed vortex patches. 
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FIGURE 6. Selected opposite-signed equilibrium solutions for (a) a = 0.2, (b)  a = 0.4, 
( c )  a = 0.6, (d )  a = 0.8 and (e) a = 1. 

the widths calculated along the symmetry axis - see the schematic in figure 5.  The sum 
of the vortex areas is again taken to be x, which implies that equilibria with different 
area ratios have different circulations, unlike in the previous case of like-signed 
vortices. 

The numerical scheme used to calculate the equilibria is slightly modified to take care 
of the fact that 52+0 as a+ 1, i.e. in the limit of equal area, the two vortices do not 
rotate; they translate. (These equal-area states were formerly calculated by 
Pierrehumbert 1980). The criterion for accepting a solution is thus stiffened to 
2xIQ’I(l+a)/(l-a) < In the limit cr-tl, Q(l+a)/(l-a)+2U/d, where Uis  
the translation rate of the vortices and d is their inter-centroid separation. 

Figure 6 shows two members of each family of equilibrium solutions for a = 0.2,0.4, 
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FIGURE 7. Contour maps of (a) the scaled rotation rate Q(1 +a)/ ( l  -a), (b) the distance between 
vortex centroids A ,  (c) the scaled angular impulse J(l -a)/(l  +a) and ( d )  the excess energy E as a 
function of the relative thickness of the smaller vortex 6 and area ratio a for the opposite-signed 
equilibrium solutions. The additional curve indicates the margin of instability. 

0.6, 0.8 and 1 ; the solutions on the left are the marginally unstable ones, while those 
on the right are the limiting ones (or, when a = 0.8, the furthest state that could be 
reached). There are two significant features to be noted. First, the equal-area equilibria 
look very different from the unequal-area equilibria and have a totally different 
limiting form. Second, the limiting states for unequal vortices exhibit a splitting of the 
larger vortex, even for small area ratios. It is conjectured that this behaviour continues 
all the way to a = 0 where the solution joins to the limiting state for two equal-vorticity 
vortices (see figure 3e). 

Figure 7, as a counterpart to figure 4, shows various basic diagnostics for the 
opposite-signed equilibrium solutions as a function of S and a (excluding the special 
case a = 1); in (a) the scaled-system rotation rate Q(l +a)/( l  -a); in (b) the distance 
between vortex centroids A ; in (c) the scaled angular impulse J( 1 -a)/( 1 +a) ; and in 
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FIGURE 8. Properties of two equal-area opposite-signed equilibrium vortex patches : (a) the 
translation velocity U ,  (b)  the distance between vortex centroids d and (c) the excess energy E as a 
function of the relative thickness 8. The linear impulse I satisfies I = nd. The margin of stability is 
at 8 = 0.472. 

( d )  the excess energy E. Diagnostics for the special case, a = 1, are shown in figure 8 : 
in (a) the translation velocity U ;  in (b) the distance between vortex centroids A ;  and in 
(c) the excess energy E as a function of 6. (Note that, in the limit a+ 1, the scaled 
rotation rate tends to 2U/A while the scaled angular impulse tends to -ZA/4, where 
I is the linear impulse, i.e. I = s s w ( x ) y  dx dy.) An additional curve is again drawn on 
the contour plots (in figure 7) to show the margin of instability; all solutions having 
greater 6 (to the right of this curve) are unstable (see 54 below). Note that the marginal 
stability curve does not always pass through a simultaneous extremum of both J and 
E (taken as functions of 6, for fixed a) even though these extrema still coexist. This 
result casts doubt on the universality of Saffman’s theory (Saffman 1992), previously 
supported in the case of like-signed vortices (further details are given below in 54). 

Finally, the contour plots of J and E cannot be used to search for the possibility of 
inviscid transitions because different equilibria generally have different areas of positive 
and negative vorticity. 
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4. Linear stability 
To determine when two vortices in near equilibrium may be expected to undergo an 

inelastic interaction, the equilibrium states are subjected to a full linear stability 
analysis, in which the equilibrium boundaries are displaced by arbitrary infinitesimal 
disturbances. Details of the method may be found in Appendix B. 

The linear stability results for like-signed vortex patches are given in figure 9, which 
shows the growth rate crr (the real part of c) as a function of the vortex gap 6 and the 
area ratio a. The growth rate monotonically increases for 6 < 6,(a), the marginal 
stability boundary. The instability in all cases takes the form of ‘an exchange of 
stability’, in which the imaginary part of cr falls to zero (like (S-6,)’/2) on the 
approach to marginal stability and remains zero for all 6 < 6,. The marginal stability 
curve coincides with the extrema of the angular impulse J and excess energy E when 
considered a function of 6, as noted above in $3.  

Figure 10 shows the corresponding results for opposite-signed vortex patches. The 
growth rate is generally non-monotonic due to the presence of multiple modes of 
instability (see figure 11). The first-encountered instability with increasing 6 is of the 
exchange-of-stability type, yet, curiously, it corresponds to the joint extremum of 
angular impulse and excess energy only for a 2 0.7. That is, the argument, based on 
Kelvin’s variational principle (Saffman 1992 and references therein), that the margin of 
stability can be decided from the E ( J )  curve alone (for an exchange-type mode of 
instability and regarding a as a fixed parameter) does not always work. For opposite- 
signed vortices, there are unstable states on both sides of this curve. It is notable that 
the topology of the E(J )  curve does not change with a, despite the saddle-type region 
in the contour plots for E and J.  An extended discussion may be found in Dritschel 
(1985, $11) and in Kamm (1987). 

5. Nonlinear evolution and transitions 
We next examine the nonlinear evolution of the marginally unstable states, first to 

verify that the marginally unstable states do precipitate inelastic interactions, secondly 
to see what general features characterize the unsteady stage of evolution, and thirdly 
to quantify the transition between one coherent state and another. 

The contour surgery algorithm is again used (with the parameter settings unchanged 
from $2). The calculations shown exhibit great complexity, requiring one to four hours 
at a calculation rate close to 1 Gflop, and to control this complexity, ‘surgery’ or the 
removal of fine-scale filamentary structures is essential. The surgery also facilitates the 
quantification of the coherent remnants of the evolution (regions of vorticity can both 
fuse and separate), allowing one to quantify a transition simply by tracking, as a 
function of time, the area contained within the largest contours. 

Calculations were performed for the marginally unstable equilibrium states having 
area ratios a = 0.1, 0.2, . . ., 1. Any instability was allowed to develop from numerical 
noise (i.e. from the error in approximating a continuous curve by a finite number of 
nodes). The vorticity within each patch is scaled up to 27c so that 2 units of time 
corresponds to the rotation period of an isolated circular vortex. A frame of reference 
rotating at the equilibrium rotation rate is employed. A few representative calculations 
are illustrated next, first for equal-vorticity interactions then for opposite-vorticity 
interactions. 
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FIGURE 9. The growth rate gr plotted as a function of S and a for the like-signed equilibrium 
states. The contour interval is 0.025 (recall that the vorticity is unity within the vortices). 

5.1. Equal-vorticity interactions 
Figure 12 shows the case a = 0.1. The finite-amplitude instability is evident by t = 16 
(third frame): a thin tongue of vorticity is drawn off the smaller vortex and 
subsequently wrapped around the larger. The transition is essentially complete 12 units 
of time later, with the smaller vortex shrinking by about a third in area and the larger 
vortex remaining unchanged. In a previous study (Dritschel & Waugh 1992), this type 
of inelastic interaction was called ‘partial straining-out ’. Note that the final coherent 
state is close to being in equilibrium. 

Figure 13 shows the case a = 0.3. We see the same initial stage of the evolution as 
in the previous case. Here, however, more circulation is contained within the filament 
encircling the larger vortex, and around t = 24 (fifth frame), we see the commencement 
of a strong interaction between the filament and the larger vortex, inducing substantial 
filamentation (Dritschel 1988b) and culminating in a loss of coherent circulation from 
the larger vortex (around 2%). Here, we have an example of an inelastic interaction 
that leaves two smaller vortices! Note again that the final coherent state is close to 
being in equilibrium. 

Figure 14 shows the case a = 0.6. Again we see the same initial stage of evolution, 
though the filament being drawn off the smaller vortex begins to strongly interact with 
the larger vortex before it detaches. More circulation is drawn from the smaller vortex 
than in previous cases, and this trend continues with increasing a up to a = 1. This case 
is of special significance because the larger vortex neither shrinks nor grows significantly 
in circulation, despite severe agitation of its boundary. The evolution falls on the 
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FIGURE 10. The growth rate u, plotted as a function of 8 and a for the opposite-signed 
equilibrium states. The contour interval is 0.025. 

boundary of the ‘partial straining-out ’ and ‘partial merger’ regimes of inelastic 
interactions. Again, the final coherent state is close to being in equilibrium. 

Figure 15 shows the case CL = 0.9. Once again we see the same initial stage of 
evolution, only with an earlier interaction between the filament and the larger vortex. 
One might say that the filament expulsion and its joining with the larger vortex occur 
almost simultaneously. This case begins to resemble (up to t = 12, the second frame) 
the classical picture of vortex merger that is based on symmetric vortex interactions, 
yet, by t = 16, we see a rapid departure from the classical picture: the vortices only 
partially merge before separating into two large coherent pieces. Here, the larger 
vortex grows significantly (by 20 YO) while the smaller vortex shrinks (by 70 %) in a way 
characteristic of this regime of ‘partial merger’. Once again, the final coherent state is 
close to being in equilibrium. 

Several common evolutionary features are apparent. First, the instability begins in 
the same way, via the eruption of a tongue of vorticity from the inward-pointing nose 
of the smaller vortex. This behaviour is closely similar to that exhibited by a steady 
elliptical vortex patch in a linear background straining flow (i.e. a combination of pure 
deformation and pure rotation; for specific results, see equation (36) and figure 14 of 
Dritschel 1990). The first mode of instability encountered upon parametrically 
increasing the strain rate has three-fold symmetry (i.e. the disturbance function is given 
by 7 = A cos 38 + B sin 38). (Increasing the strain rate is analogous to decreasing the 
vortex separation in the calculations just described.) This is significant since the 
nonlinear evolution of a mode 3 instability (see figure 22 of Dritschel 1990), has 
precisely the initial form seen here. And one can see this once more in the mode 3 
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FIGURE 1 1 .  The frequency gi (small dots) and the growth rate g, (larger dots) plotted as a 
function of 6 for (a) a = 0.3, (b)  a = 0.6 and (c) CL = 0.9 for opposite-signed equilibrium states. 
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FIGURE 12. Evolution of the marginally unstable like-signed equilibrium state for a = 0.1. Time 
advances to the right and downwards. The initial condition is shown in the upper left frame. Four 
units of time separate successive frames in this and subsequent figures, except for the first two frames. 
The gap of time between the first two frames depends on the level of noise and is therefore not 
particularly meaningful (it is, however, normally 12 units for like-signed interactions and between 32 
and 56 units for opposite-signed ones). 

instability of a freely rotating Kirchhoff elliptical vortex (see figures 12 and 13 of 
Dritschel 1986). 

The second notable evolutionary feature is the remarkable return of the flow to a 
near equilibrium. It appears that this return to near equilibrium occurs through the 
homogenization of the enormous filamentary complexity riding on the vortex 
boundaries after the initial strong interaction of the two vortices (e.g. see figure 16 for 
a close-up of the calculation for a = 0.9 at t = 40). An explanation for this cannot be 
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FIGURE 13. As in figure 12, but for a = 0.3. 

put forward at the present time; it is clear from figure 16 that numerical resolution 
effects can hardly be the cause. 

We now return to an examination of the numerical calculations and consider the 
equal-area case, a = 1 ,  in figure 17. Here, we see a qualitative change in the initial 
evolution: the two vortices merge with little filamentary debris into one compound 
vortex, which subsequently undergoes an instability (starting at t = 16) very similar to 
that of a mode 4 disturbance to a 6:  1 ellipse (see figure 12 of Dritschel 1986). The tips 
of the filamentary tongues roll up into small satellite vortices, leading to three coherent 
vortices. 

But now contrast this with the slightly asymmetric case a = 0.99, shown in figure 18. 
The initial evolution is like the symmetric case in the previous figure, but the 
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FIGURE 14. As in figure 12, but for a = 0.6. 

subsequent instability of the compound vortex is very different: it is instead like the 
instability of a mode-3 disturbance to a 6: 1 ellipse (see figure 12 of Dritschel 1986). The 
fact is that the mode-3 disturbance is the first to destabilize with increasing aspect ratio, 
though at a 6 to 1 aspect ratio both modes 3 and 4 have comparable growth rates. The 
conclusion here is that the case 01 = 1 is exceptional : in the presence of a weak external 
flow, three-fold disturbances will almost always dominate four-fold ones in the 
interaction of two vortices, even if they be of equal area (which is itself extremely 
unlikely). 

The results for like-signed vortices have been quantified by computing the time 
evolution of the areas of the four largest contours in each calculation; see figure 19 for 
two examples: a =  0.3 and a = 0.9. After a short transition period, on the order of a 
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FIGURE 15. As in figure 12, but for a = 0.9, 

vortex rotation period, a remarkably invariant signal of two dominant quasi-steady 
vortices is re-established. The invariance of this signal permits one to draw a clear 
picture of the transition from one coherent flow state to another. This picture is 
displayed in figures 20(a) and 20(b). See also table 1. Figure 20(a) shows, as a function 
of the initial vortex area ratio a, the initial vortex areas divided by n as the solid curves, 
the final vortex areas divided by n as the large squares, the final vortex area ratio as 
the small diamonds, and the ‘efficiency’ of the transition, i.e. the ratio of the final to 
initial area within the coherent vortices, as the plusses. Note that the small vortex 
always gets smaller, while the larger vortex gets larger only for area ratios a 2 0.6. This 
leads to the interesting result that the final vortex area ratio is always less than 0.5. The 
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FIGURE 16. Close-up view of figure 15 at t = 40 (eighth frame). 

amount of filamentary debris increases with increasing a, reaching 21 YO of the initial 
area for nearly equal vortices. Figure 20(b) shows the initial distance between vortex 
centres, A,,  before the transition takes place. Note that A,  is nearly independent of 01, 
giving a simple criterion for the onset of an inelastic interaction: A' 5 1.74, or more 
precisely, 4' 5 [1.609+0.253(1 -01)~+0.004]4, where 4 is the total area of the two 
vortices. 

The solid circles plotted in Figure 20(b) show the critical distance for the onset of an 
inelastic interaction for two initially circular vortices that was obtained in a previous 
work (Dritschel & Waugh 1992). This distance was computed by finding a 
corresponding equilibrium state of the same angular impulse and area ratio, and using 
the distance between these equilibrium vortices. In fact, this transformed distance 
differs remarkably little, never more than 0.5 YO, from the original distance between the 
circular vortices (thus the distortion of the equilibrium states from a circular state 
contributes negligibly to the angular impulse). What we do see here is that the circular 
initial conditions overestimate the critical distance for the onset of an inelastic 
interaction between vortices in mutual equilibrium by 8-10 YO. 

Dritschel & Waugh (1992) also obtained results for the interaction of vortices within 
the critical distance. If we map the results of the present paper to their regime diagram, 
particularly the critical distance for an inelastic interaction (of two equilibrium 
vortices), by associating an equivalent circular-vortex initial condition having identical 
angular impulse, we find that the critical distance curves crosses all four regimes of 
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FIGURE 17. As in figure 12, but for CL = 1 .  

inelastic interaction - see figure 21. In the present work, radius ratios less than 
dO.1  z 0.3 were not examined, so no comment can be made about the crossover from 
complete straining out to partial straining out at RJR,  z 0.18. However, data are 
available for the crossover from partial straining out to partial merger: in figure 21, this 
is seen to occur at R,/R, % 0.59, whereas the actually observed crossover occurs at 
R J R ,  z d0.6 z 0.77. The final crossover from partial to complete merger at 
R,/R, z 0.98 is approximately the same in both models. The conclusion is that the 
results for circular vortices are only qualitatively similar to those for equilibrium 
vortices. 
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FIGURE 18. As in figure 12, but for a = 0.99. 

5.2. Opposite-vorticity interactions 
Next we turn to opposite-signed vortex interactions. The possibility of inelastic 
interaction involving opposite-signed vortices seems not to have been considered 
previously, and indeed there are some surprises in store. Three representative 
calculations are illustrated. Figure 22 shows the case a = 0.1. The instability 
commences in a way analogous to the like-signed cases above. A thin tongue of 
vorticity is drawn off the larger (but more eccentric) vortex, but, in contrast to the like- 
signed case, the tip of the thin filament rolls up into a small vortex (which is hard to 
see in the present example). Of course, with opposite-signed vortices, the two original 
vortices cannot merge. What we see, rather is the partial breakup of the larger vortex. 
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FIGURE 19. The areas (divided by n) of the four largest contours versus time for 
(a) a = 0.3 and (b) a = 0.9 (for like-signed vortices). 

Figure 23 shows the case a = 0.7. We see the same initial stage of the interaction and 
the formation of a larger satellite vortex from the roll-up of the tongue originally 
drawn from the larger vortex. We see, additionally, the expulsion of a tongue of 
vorticity from the smaller vortex, apparently by the close passage of the satellite vortex. 
This second tongue forms in a way exactly analogous to the first tongue; the smaller 
vortex of the original two momentarily looks like the larger of a mismatched dipole 
when the satellite vortex passes by. Note that the flow relaxes to a near-equilibrium 
state (if one excludes the small satellite vortex). 

Figure 24 shows the perfectly matched dipole case, a = 1. Despite the symmetry of 
the initial state, an asymmetric instability develops, and the evolution proceeds like in 
the previous cases, albeit with the production of a larger satellite vortex and with the 
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FIGURE 20. (a) Transition summary diagram for the inelastic interaction of two like-signed vortex 
patches. As a function of the initial vortex area ratio a, the solid curves give the initial vortex areas 
divided by 7c, the squares give the final vortex areas divided by 7c, the diamonds give the final vortex 
area ratio, and the crosses give the efficiency (the ratio of the final and initial area within the two 
principal vortices). (b) The distance between vortex centres before the transition; the solid circles 
correspond to the results found by Dritschel & Waugh (1992) for circular initial conditions (see text 
for explanation). See also table 1. 

removal of a larger tongue of vorticity from the smaller original vortex. Again, the flow 
consisting of the two primary vortices relaxes to a near-equilibrium state. This 
relaxation occurs in the same way as for like-signed vortices, namely via the 
homogenization of the filaments riding on the vortex boundaries. The final state is less 
steady here because the degree of filamentation is significantly less for opposite-signed 
vortex interactions than for like-signed ones. 
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FIGURE 21. Figure adapted from Dritschel & Waugh (1992) showing the regimes of vortex 
interactions for two initially circular vortices. Vortex radius ratio, RJR,, is shown versus the 
dimensionless gap between vortices, ( A  - R, - R,)/R,. The rightmost solid curve shows the boundary 
between elastic and inelastic interactions, the short-dashed curve separates interactions which result 
in a net circulation gain of the larger vortex (above curve, merger) from those which result in no 
circulation gain (straining out), and the long-dashed curve separates complete merger or straining out 
(left) from partial merger or straining out (right). The new result shown in this figure is the left-hand 
solid curve, which corresponds to the boundary between elastic and inelastic interactions for the non- 
circular equilibrium states of the present paper. 

ai 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

4 l L  
2.385 
2.359 
2.335 
2.314 
2.295 
2.279 
2.265 
2.254 
2.246 
2.243 

af 
0.0635 
0.1499 
0.2386 
0.3105 
0.3925 
0.4561 
0.4851 
0.4605 
0.2568 
0.0624 

A,lL 
2.765 
2.735 
2.872 
3.006 
3.077 
3.178 
3.238 
3.148 
3.019 
1.497 

TABLE 1. Equal-vorticity vortex transition properties: shown are the vortex area ratios and 
intercentroid distances before (subscript i) and after (subscript f) an inelastic interaction. A, was 
computed from a time average over five to ten vortex rotation periods late in each calculation. Here, 
L = ( d / n ) l I 2 ,  d being the total coherent area within the two principal vortices. 

The quantitative results for opposite-signed vortices are given in figure 25 and table 
2, which shows the properties of the transition from the initial coherent state, 
consisting of two vortices, to the final one, consisting of three. The format for this 
figure is similar to its counterpart for like-signed vortices, figure 20, except that in (a) 
there is an additional set of small squares for the area (divided by n) of the small 
satellite vortex torn from the larger of the original two. Note that both the smaller and 
the larger vortices decrease in area through the transition, and that the final area ratio 
remains equal to or slightly greater than the initial area ratio, in stark contrast to the 
results found for like-signed vortices. The amount of filamentary debris, however, 
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FIGURE 22. Evolution of the marginally unstable opposite-signed equilibrium state for a = 0.1 

again increases with initial vortex area ratio, reaching 20 YO of the total initial area for 
equal-sized vortices. In (b), which shows the initial distance di between vortex centres, 
we see that Ai depends strongly on 01, in contrast to the result for like-signed vortices. 
One can nevertheless find a simple criterion for the onset of an inelastic interaction: 
Ai 5 (1.450-0.46401 & 0.004) L, where L = (d /n ) l iZ .  

In summary, we observe (a)  that marginally unstable equilibrium states do 
precipitate inelastic interactions in all cases, (b) they begin in the same way via the 
expulsion of the filament from the more eccentric vortex of the pair (the only exception 
is for two identical like-signed vortices), and (c)  they make a rapid transition to a new 
coherent quasi-steady state, having two vortices in the case of like-signed interactions, 
or having three vortices in the case of opposite-signed interactions. 
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FIGURE 23. As in figure 22, but for a = 0.7. 

Figures 20 and 25 constitute the major findings of this study. They quantify the 
outcome of inelastic vortex interactions precipitated by the slow drift of two vortex 
patches across their marginal stability threshold. 

6. Conclusions 
The present results have shown that, for generally well-separated vortices which drift 

only slowly toward or away from each other, vortices tend to assume a near- 
equilibrium shape functionally dependent on the local ambient strain. When two such 
vortices move across a certain threshold, a local instability of the two vortices takes 
place which leads to a short unsteady inelastic interaction. For vortex patches, studied 
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FIGURE 24. As in figure 22, but for 01 = 1 .  

herein, the first sign of instability is the eruption of a tongue of vorticity from the more 
eccentric vortex; this has been identified as the mode-3 instability of an elliptical 
vortex. The tongue then interacts with the other vortex and, in the case of like-signed 
vortices, if the vortex area ratio exceeds 0.6, the larger vortex incorporates part of this 
tongue on its periphery and thus grows in size. If the area ratio is less than 0.6, the 
interaction of the tongue and the larger vortex causes so much filamentation that the 
larger vortex actually shrinks slightly in size. In the case of opposite-signed vortices, an 
inelastic interaction always causes the vortices to shrink in size. The coherent state that 
emerges always consists of two or three quasi-steady vortices. The classical picture of 
a single product is never observed, and the connection between the inverse energy 
cascade and inelastic vortex interactions is put into doubt. 
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FIGURE 25. (a) Transition summary diagram for the inelastic interaction of two opposite-signed 
vortex patches. As a function of the initial vortex area ratio a, the solid curves give the initial vortex 
areas divided by 7c, the squares give the final vortex areas divided by 7c (the small squares correspond 
to the tiny vortex which was torn from the larger one initially), the diamonds give the final vortex area 
ratio (of the two largest vortices), and the crosses give the efficiency (the ratio of the final and initial 
total area within the principal vortices). (b) The distance between vortex centres before the transition. 
See also table 2. 

Are these interactions actually observed in two-dimensional turbulence? Evidence 
has already been given in the case of like-signed interactions in Dritschel (1993). The 
fact that there are also opposite-signed inelastic interactions came as a surprise, but a 
closer examination of vortex behaviour in two-dimensional turbulence reveals that 
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1.269 
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1.120 
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1.035 
0.983 

af 
0.1090 
0.2214 
0.3276 
0.4545 
0.5566 
0.6969 
0.7739 
0.9038 
0.9844 
0.8552 

AflL 
1.521 
1.735 
1.879 
2.046 
2.085 
2.169 
2.274 
2.430 
2.498 
2.477 

TABLE 2. Opposite-vorticity vortex transition properties. See table 1 for notation 

such interactions are apparently as common as their like-signed counterparts - see for 
example figure 26. 

Efforts have been made to construct a simplified model of dilute two-dimensional 
turbulence based on the present results (in collaboration with N. J. Zabusky and 
H. B. Yao). However, a vortex-tracking tool recently developed for analysing inelastic 
interactions in two-dimensional turbulence simulations has revealed a picture 
considerably more complex than expected. First, inelastic interactions occur between 
at least three vortices typically, and, secondly they result in vortex structures which are 
clearly the product of the locally complex time-dependent straining field of all the 
vortices involved (see Dritschel & Zabusky 1995). While the ingoing states often evolve 
adiabatically, and the initial stage of the inelastic interaction is similar to that described 
in the present paper, the final stages depend, and therefore so do the resulting vortices, 
on all the nearby surrounding vortices. That is, the local, externally produced straining 
field cannot be neglected in the final stages of any interaction. These findings appear 
to thwart any chance to construct a simplified model of nearly inviscid two- 
dimensional turbulence at the vortex level. We propose (in Dritschel & Zabusky 1995), 
alternatively, an intermediate-level model - the Hybrid Elliptical-Contour (HEC) 
model - which uses an elliptical representation for vortices experiencing weak levels of 
external straining, and which otherwise uses a contour representation. In this model, 
inelastic interactions are carried out using the full contour surgery algorithm. We 
believe that this model is the simplest asymptotic model for nearly inviscid two- 
dimensional turbulence. 

A theory for two-dimensional turbulence appears more distant than ever, if one 
expects such a theory at the vortex level. The difficulty, as just discussed, is 
parameterizing the result of an inelastic vortex interaction. There simply appears to be 
too many parameters to make this feasible - or intelligible. What the present work has 
shown is that the individual vortex interactions in two-dimensional turbulence exhibit 
common evolutionary characteristics. Whether or not this implies some kind of 
universality for the collective behaviour of a multitude of vortices - for two- 
dimensional turbulence - remains an intriguing question. 

This paper has focused on the simplest case of vortex patches having equal vorticity 
magnitude. One might wonder about cases in which the vorticity is not uniform and 
varies from vortex to vortex. When the vorticity is not uniform, the stripping process 
efficiently removes a vortex’s peripheral vorticity up to a level dependent on the 
amount of strain experienced by the vortex (Legras & Dritschel 1993 and references 
therein). Inelastic vortex interactions are characterized by relatively strong levels of 
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FIGURE 26. Selected times from a calculation of two-dimensional turbulence on a unit sphere showing 
an inelastic interaction between opposite-signed vortices. All vortices are patches having equal 
vorticity magnitude, and the time (indicated to the upper-right of each frame) is in units of a vortex 
rotation period. Initially 10 % of the domain is occupied by 10 positive and 10 negative equal-sized 
vortices. Times 9 and 10 show the formation of a mismatched dipole, times 11-16 show the 
subsequent instability of this dipole, and times 17-20 show the separation of the dipole by 
surrounding vortices. The calculation was performed with contour surgery using the numerical 
parameters At = 0.05, ,u = 0.15 and 8 = 0.0016. 
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strain and produce vortices with moderate edge vorticity values (Waugh 1992; 
Dritschel 1993; Mariotti, Legras & Dritschel 1994; Yao, Dritschel & Zabusky 1995). 
In the absence of forcing and dissipation that would smear out vortex edges, it stands 
to reason that a vortex would become progressively more patch-like after successive 
inelastic interactions, simply because its weaker edge vorticity is more susceptible to 
being stripped away and ‘lost’ to filaments than the high-level vorticity found near the 
vortex centre. For the same reason, in a flow with vortices of varying peak vorticity, 
the vortices with the highest peak vorticity would tend to eliminate the vortices having 
significantly lower peak vorticity. Hence, though the vortex patch idealizes the likely 
parabolic-topped shape (Legras & Dritschel 1993) of vortices after many inelastic 
interactions, it is not an unreasonable approximation, and, of course, it is simple. It is 
the first step. 

Finally, it is worth asking in future research how the present results may apply to the 
more general layerwise-two-dimensional flows characteristic of the oceans and the 
atmosphere. As a start in this direction, a simple change of the Green funation from 
logr to -Ko(r/L) or a combination of the two functions as in multi-layer quasi- 
geostrophic flow (Dritschel & Saravanan 1994) does not appear so significant as to 
qualitatively alter the present results. A quantitative study is nevertheless merited and 
may lead to a deeper understanding of the vortex interaction process in geophysical 
fluid dynamics. 

Support for this research has come from the UK Natural Environment Research 
Council. Additional support was provided by the Innovative Science and Technology 
Program through grant number NO00 14-92-5-2009 administered by the US Naval 
Research Laboratory, by the Isaac Newton Trust, by NATO, and by the European 
Community. 

Appendix A. The construction of an optimal instantaneous co-rotating 
reference frame 

Details are given here for how the rotating-frame streamfunction was computed in 
the calculation illustrated in figure 1. In general, the object is to determine, in some 
optimal sense, the rotating frame of reference in which contours of vorticity and of 
streamfunction are most closely aligned (perfect alignment implies the flow is in 
equilibrium). The streamfunction in this rotating frame is given by 

II/‘ = II/ - $2 1x12, (A 1) 
where 52 is the rotation rate. In general, D is a function of time. Here, II/ is the 
streamfunction in the original frame of reference (i.e. VII/ = w).  52 is determined, 
formally, by minimizing 

r r  

F(D) = J J dxdy(aw’/at)2/lVwl, 

where aw’/at = - J ( y ,  w )  = -u‘.Vw, and u’ is the velocity in the rotating frame: 

u’ = u+Db, -x}. (A 3) 
Letting Vw = JVol ii define the unit normal vector f i  for any vorticity contour 
(w = constant), (A 2) can be re-written as 

F(52) = I P x  dy lVwl (u’.ii)’ (A 4) 
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revealing why l/lVwl is used in the integrand of (A 2): only with this weight does 
(A 2) have a meaningful limit for a piecewise-constant distribution of vorticity ; this limit 
is given by 

F(Q) = z IGkl (jWk ds(u'. v, (A 5 )  
k 

where 13,) is the magnitude of the vorticity jump across qk and s is arclength. 
In this paper, the distribution of vorticity is piecewise constant, so (A 5) is used. 

Minimizing F with respect to 52 (setting aF/i352 = 0) leads to the following simple 
expression for 52: 

where f is the unit tangent vector, i.e. t^ = { t z ,  tY} = {nu, -n,}. 
The quantity F measures, quantitatively, how closely the o and ~ contours are 

matched and hence how steady the instantaneous flow appears in this frame of 
reference. Dividing F by the denominator of (A 6) multiplied by the peak vorticity 
magnitude w p  squared gives a dimensionless measure of the degree of unsteadiness, the 
normalized squared variance 6' : 

whose continuous form reads 

//dx dy IVw( ( ~ ' - f i ) ~  
2 ( t )  = /. (. 

Other procedures exist for constructing an 'optimal ' rotating frame of reference (e.g. 
see Melander, McWilliams & Zabusky 1987), but the one presented here seems the 
easiest to implement in practice. Furthermore, this idea can be simply extended to 
determine, perhaps in addition to the background rotation 0, the mean translation rate 
of the vortex system as well as higher-order characteristics of the local flow field (e.g. 
the background strain). This diagnostic may thus prove useful for examining vortex 
interactions in two-dimensional turbulence. 

Appendix B. The linear stability method 
The method described next was first used by Dritschel & Legras (1991) to determine 

the stability of nested elliptical-like distributions of vorticity. However, the method itself 
has remained unpublished (it differs substantially from the method originally presented 
by Dritschel 1985). Here, we give a brief outline of this 'new' method. 

Let a subscript e denote equilibrium quantities (apart from their basic properties, 
such as their rotation rate 52). Quantities without a subscript refer to the disturbed 
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flow. The basic idea is to represent a disturbance to any vorticity contour of the 
equilibrium state as follows : 

i.e. as a normal displacement (we consider, thus, only perturbations that could arise 
under the action of a weak irrotational external field). Here, the correction to x, is 
considered small compared with x, itself so that we may linearize the equations of 
motion keeping terms only to first order in 7, the ‘disturbance function’. 

The variable I9 can be any parametrization of the vorticity contour, but there is a 
special parametrization that leads to particular simplicity, namely I9 being proportional 
to the travel time for a fluid particle to go from some fixed location along the 
equilibrium vorticity contour to some other location (we choose the normalization 
constant so that 6 = 27c for a complete circuit of the contour). If we denote the 
frequency with which particles circuit the kth equilibrium contour by Qek,  then the 
disturbance function of the kth contour q,(B,, t )  evolves according to 

where 

and where n is the total number of contours (two in the problem considered in this 
paper) and Oj is the inward vorticity jump across the jth contour (k 1 for all the 
contours considered here). 

There are several remarkable features of this equation. First, the overall rotation rate 
SZ does not appear explicitly (it does enter the calculation of the parametrization, 
19). Secondly, the eigenfunctions for an elliptical vortex patch are simply 
( A ,  cos mI9 + B, sin me) cut, m = 1 , 2, . . ., i.e. there is no mode coupling (Love 1893 ; 
Dritschel 1990). Third, the equation remains unchanged in the presence of an external 
straining field. And fourth, the equation can be used to test the stability of more general 
two-dimensional flows by replacing (27c)-l log r in (3 b) by the appropriate Green 
function G (under the weak restriction that G depends only on the coordinate 
differences between points). 

In general, the mode decoupling that occurs for the elliptical vortex patch does not 
extend to other equilibrium states. We therefore represent the disturbance function r k  
on each contour by a finite sum of cosines and sines, up to order m = M .  By inserting 
this sum into (2), we arrive at a matrix eigen-problem for the eigenvalue v and the 
mode amplitudes A,, and B,, (where k refers to the contour index). The matrix order 
is 2Mn x 2Mn. 

In a previous work (Dritschel 1985), the disturbance was not allowed to modify the 
angular impulse J. The argument forwarded then (and originally by Thomson 1883 in 
his linear stability analysis of a system of co-rotating point vortices) was that any 
change to the angular impulse would require an infinite amount of energy to bring 
about, and hence was not realizable. In the present work, however, we imagine there 
to be a weak external field (e.g. due to distant, but not infinitely distant, vortices) 
capable of pushing the vortices together and, hence, capable of modifying their angular 
impulse. Thus, we do not impose this constraint here. On the other hand, we do impose 
the constraint that the area of each contour remains unchanged. Irrotationally 
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produced disturbances cannot modify the area of vorticity contours. This constraint is 
automatically imposed by the choice of disturbance representation taken in (B 1). 

The numerical procedures involved are described only briefly. Cubic-spline inter- 
polation and two-point Gaussian quadrature are used to set up the parameterization 
8 and to perform the integral in (B 2b), using all 398 nodes per contour of the 
equilibrium states. Special care is taken to avoid integrating through the logarithmic 
singularity in (B 2b) by adding and subtracting the term log (1 - cos (0, - 0,)) from 
the logarithm in the integrand. The integral over this term can be performed 
analytically, leaving one to compute only the integral of the non-singular difference of 
two singular functions. The numerical package NAG is used to calculate the eigenvalues 
(v) and eigenvectors (Amk, Bmk, m = 1,2, ..., M ,  k = 1,2). M = 50 modes are used in 
the results presented. Some selected states were analysed using M = 100 modes, and 
the eigenvalues were found to shift by less than 0.0001 except very close to the marginal 
stability boundary, where approximately ten times greater error was observed. 
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